浙江快乐彩开奖查询:Analysis of a Nonlinear Age-Structured Model for Tumor Cell Populations with Quiescence

浙江快乐彩12造5 www.ewpyt.com 發布者:文明辦作者:發布時間:2019-06-04瀏覽次數:776


主講人:陳靜 諾瓦東南大學博士


時間:2019年6月14日15:30


地點:3號樓301室


舉辦單位:數理學院


主講人介紹:陳靜,2015年從美國邁阿密大學(University of  Miami)數學系獲得應用數學博士學位,畢業后留校從事博士后研究,至2018年8月起在位于美國佛羅里達州勞德代爾堡市的諾瓦東南大學數學系工作至今。主要研究方向是微分方程、動力系統、數學傳染病學和種群生物學等,在SIAM  J Appl Math、PLoS Neg Trop Dis、J Theor Biol、J Nonlinear Sci、Bull Math Biol、J Dyn  Differ Equ等權威學術期刊發表論文10多篇。


內容介紹:We present a nonlinear first-order hyperbolic partial differential equation  model to describe age-structured tumor cell populations with proliferating and  quiescent phases at the avascular stage in vitro. The division rate of the  proliferating cells is assumed to be nonlinear due to the limitation of the  nutrient and space. The model includes a proportion of newborn cells that enter  directly the quiescent phase with age zero. This proportion can reflect the  effect of treatment by drugs such as erlotinib. The existence and uniqueness of  solutions are established. The local and global stabilities of the trivial  steady state are investigated. The existence and local stability of the positive  steady state are also analyzed. Numerical simulations are performed to verify  the results and to examine the impacts of parameters on the nonlinear dynamics  of the model.